The Stacks project

Lemma 37.6.2. If $f : X \to S$ is a formally unramified morphism, then given any solid commutative diagram

\[ \xymatrix{ X \ar[d]_ f & T \ar[d]^ i \ar[l] \\ S & T' \ar[l] \ar@{-->}[lu] } \]

where $T \subset T'$ is a first order thickening of schemes over $S$ there exists at most one dotted arrow making the diagram commute. In other words, in Definition 37.6.1 the condition that $T$ be affine may be dropped.

Proof. This is true because a morphism is determined by its restrictions to affine opens. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04F1. Beware of the difference between the letter 'O' and the digit '0'.