Lemma 10.155.5. Let $R \to S$ be a local map of local rings. Let $S \to S^ h$ be the henselization. Let $R \to A$ be an étale ring map and let $\mathfrak q$ be a prime of $A$ lying over $\mathfrak m_ R$ such that $R/\mathfrak m_ R \cong \kappa (\mathfrak q)$. Then there exists a unique morphism of rings $f : A \to S^ h$ fitting into the commutative diagram

such that $f^{-1}(\mathfrak m_{S^ h}) = \mathfrak q$.

## Comments (0)

There are also: