Lemma 7.35.3. Let \mathcal{C} be a site. Let p be a point of \mathcal{C} given by u : \mathcal{C} \to \textit{Sets}. Let U be an object of \mathcal{C}. For any sheaf \mathcal{G} on \mathcal{C}/U we have
(j_{U!}\mathcal{G})_ p = \coprod \nolimits _ q \mathcal{G}_ q
where the coproduct is over the points q of \mathcal{C}/U associated to elements x \in u(U) as in Lemma 7.35.1.
Proof.
We use the description of j_{U!}\mathcal{G} as the sheaf associated to the presheaf V \mapsto \coprod \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V/_\varphi U) of Lemma 7.25.2. Also, the stalk of j_{U!}\mathcal{G} at p is equal to the stalk of this presheaf, see Lemma 7.32.5. Hence we see that
(j_{U!}\mathcal{G})_ p = \mathop{\mathrm{colim}}\nolimits _{(V, y)} \coprod \nolimits _{\varphi : V \to U} \mathcal{G}(V/_\varphi U)
To each element (V, y, \varphi , s) of this colimit, we can assign x = u(\varphi )(y) \in u(U). Hence we obtain
(j_{U!}\mathcal{G})_ p = \coprod \nolimits _{x \in u(U)} \mathop{\mathrm{colim}}\nolimits _{(\varphi : V \to U, y), \ u(\varphi )(y) = x} \mathcal{G}(V/_\varphi U).
This is equal to the expression of the lemma by our construction of the points q.
\square
Comments (0)