Lemma 58.40.1. Let $f : X \to Y$ be a morphism of schemes. The morphism of ringed sites $(f_{small}, f_{small}^\sharp )$ associated to $f$ is a morphism of locally ringed sites, see Modules on Sites, Definition 18.40.9.

**Proof.**
Note that the assertion makes sense since we have seen that $(X_{\acute{e}tale}, \mathcal{O}_{X_{\acute{e}tale}})$ and $(Y_{\acute{e}tale}, \mathcal{O}_{Y_{\acute{e}tale}})$ are locally ringed sites, see Lemma 58.33.5. Moreover, we know that $X_{\acute{e}tale}$ has enough points, see Theorem 58.29.10 and Remarks 58.29.11. Hence it suffices to prove that $(f_{small}, f_{small}^\sharp )$ satisfies condition (3) of Modules on Sites, Lemma 18.40.8. To see this take a point $p$ of $X_{\acute{e}tale}$. By Lemma 58.29.12 $p$ corresponds to a geometric point $\overline{x}$ of $X$. By Lemma 58.36.2 the point $q = f_{small} \circ p$ corresponds to the geometric point $\overline{y} = f \circ \overline{x}$ of $Y$. Hence the assertion we have to prove is that the induced map of stalks

is a local ring map. Suppose that $a \in \mathcal{O}_{Y, \overline{y}}$ is an element of the left hand side which maps to an element of the maximal ideal of the right hand side. Suppose that $a$ is the equivalence class of a triple $(V, \overline{v}, a)$ with $V \to Y$ étale, $\overline{v} : \overline{x} \to V$ over $Y$, and $a \in \mathcal{O}(V)$. It maps to the equivalence class of $(X \times _ Y V, \overline{x} \times \overline{v}, \text{pr}_ V^\sharp (a))$ in the local ring $\mathcal{O}_{X, \overline{x}}$. But it is clear that being in the maximal ideal means that pulling back $\text{pr}_ V^\sharp (a)$ to an element of $\kappa (\overline{x})$ gives zero. Hence also pulling back $a$ to $\kappa (\overline{x})$ is zero. Which means that $a$ lies in the maximal ideal of $\mathcal{O}_{Y, \overline{y}}$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)