Lemma 66.19.5. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $\overline{x}$ be a geometric point of $X$. Let $(U, \overline{u})$ an étale neighborhood of $\overline{x}$. Let $\{ \varphi _ i : U_ i \to U\} _{i \in I}$ be an étale covering in $X_{spaces, {\acute{e}tale}}$. Then there exist $i \in I$ and $\overline{u}_ i : \overline{x} \to U_ i$ such that $\varphi _ i : (U_ i, \overline{u}_ i) \to (U, \overline{u})$ is a morphism of étale neighborhoods.

**Proof.**
Let $u \in |U|$ be the image of $\overline{u}$. As $|U| = \bigcup _{i \in I} \varphi _ i(|U_ i|)$ there exists an $i$ and a point $u_ i \in U_ i$ mapping to $x$. Apply Lemma 66.19.4 to $(U_ i, u_ i) \to (U, u)$ and $\overline{u}$ to get the desired geometric point.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: