The Stacks project

Lemma 10.47.14. Let $K/k$ be an extension of fields. Let $\overline{k}/k$ be a separable algebraic closure. Then $\text{Gal}(\overline{k}/k)$ acts transitively on the primes of $\overline{k} \otimes _ k K$.

Proof. Let $K/k'/k$ be the subextension found in Lemma 10.47.13. Note that as $k \subset \overline{k}$ is integral all the prime ideals of $\overline{k} \otimes _ k K$ and $\overline{k} \otimes _ k k'$ are maximal, see Lemma 10.36.20. By Lemma 10.47.7 the map

\[ \mathop{\mathrm{Spec}}(\overline{k} \otimes _ k K) \to \mathop{\mathrm{Spec}}(\overline{k} \otimes _ k k') \]

is bijective because (1) all primes are minimal primes, (2) $\overline{k} \otimes _ k K = (\overline{k} \otimes _ k k') \otimes _{k'} K$, and (3) $K$ is geometrically irreducible over $k'$. Hence it suffices to prove the lemma for the action of $\text{Gal}(\overline{k}/k)$ on the primes of $\overline{k} \otimes _ k k'$.

As every prime of $\overline{k} \otimes _ k k'$ is maximal, the residue fields are isomorphic to $\overline{k}$. Hence the prime ideals of $\overline{k} \otimes _ k k'$ correspond one to one to elements of $\mathop{\mathrm{Hom}}\nolimits _ k(k', \overline{k})$ with $\sigma \in \mathop{\mathrm{Hom}}\nolimits _ k(k', \overline{k})$ corresponding to the kernel $\mathfrak p_\sigma $ of $1 \otimes \sigma : \overline{k} \otimes _ k k' \to \overline{k}$. In particular $\text{Gal}(\overline{k}/k)$ acts transitively on this set as desired. $\square$


Comments (4)

Comment #749 by Keenan Kidwell on

At the end of the proof, would it be simpler to just invoke 037O, which says that the map is a bijection (since all primes are minimal in this situation)?

Comment #8278 by Et on

Why does every prime in being maximal imply that every residue field is isomorphic to ?

Comment #8912 by on

Because then the residue field is a quotient of the ring, whence integral over (because and are integral over ), whence algebraic extension of containing .

There are also:

  • 6 comment(s) on Section 10.47: Geometrically irreducible algebras

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04KP. Beware of the difference between the letter 'O' and the digit '0'.