Lemma 10.47.14. Let $K/k$ be an extension of fields. Let $\overline{k}/k$ be a separable algebraic closure. Then $\text{Gal}(\overline{k}/k)$ acts transitively on the primes of $\overline{k} \otimes _ k K$.
Proof. Let $K/k'/k$ be the subextension found in Lemma 10.47.13. Note that as $k \subset \overline{k}$ is integral all the prime ideals of $\overline{k} \otimes _ k K$ and $\overline{k} \otimes _ k k'$ are maximal, see Lemma 10.36.20. By Lemma 10.47.7 the map
is bijective because (1) all primes are minimal primes, (2) $\overline{k} \otimes _ k K = (\overline{k} \otimes _ k k') \otimes _{k'} K$, and (3) $K$ is geometrically irreducible over $k'$. Hence it suffices to prove the lemma for the action of $\text{Gal}(\overline{k}/k)$ on the primes of $\overline{k} \otimes _ k k'$.
As every prime of $\overline{k} \otimes _ k k'$ is maximal, the residue fields are isomorphic to $\overline{k}$. Hence the prime ideals of $\overline{k} \otimes _ k k'$ correspond one to one to elements of $\mathop{\mathrm{Hom}}\nolimits _ k(k', \overline{k})$ with $\sigma \in \mathop{\mathrm{Hom}}\nolimits _ k(k', \overline{k})$ corresponding to the kernel $\mathfrak p_\sigma $ of $1 \otimes \sigma : \overline{k} \otimes _ k k' \to \overline{k}$. In particular $\text{Gal}(\overline{k}/k)$ acts transitively on this set as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (4)
Comment #749 by Keenan Kidwell on
Comment #762 by Johan on
Comment #8278 by Et on
Comment #8912 by Stacks project on
There are also: