Definition 35.33.1. Let $\mathcal{Q}$ be a property of morphisms of germs of schemes. We say $\mathcal{Q}$ is *étale local on the source-and-target* if for any commutative diagram

\[ \xymatrix{ (U', u') \ar[d]_ a \ar[r]_{h'} & (V', v') \ar[d]^ b \\ (U, u) \ar[r]^ h & (V, v) } \]

of germs with étale vertical arrows we have $\mathcal{Q}(h) \Leftrightarrow \mathcal{Q}(h')$.

## Comments (0)