Lemma 10.108.3. Let $R$ be a ring. If $I, J \subset R$ are pure ideals, then $V(I) = V(J)$ implies $I = J$.
Pure ideals are determined by their vanishing locus.
Proof.
For example, by property (7) of Lemma 10.108.2 we see that $I = \mathop{\mathrm{Ker}}(R \to \prod _{\mathfrak p \in V(I)} R_{\mathfrak p})$ can be recovered from the closed subset associated to it.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #1221 by David Corwin on
There are also: