Lemma 40.11.7. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme over $S$. Assume $U$ is the spectrum of a field. Let $Z \subset U \times _ S U$ be the reduced closed subscheme (see Schemes, Definition 26.12.5) whose underlying topological space is the closure of the image of $j = (t, s) : R \to U \times _ S U$. Then $\text{pr}_{02}(Z \times _{\text{pr}_1, U, \text{pr}_0} Z) \subset Z$ set theoretically.
Proof. As $(U, U \times _ S U, \text{pr}_1, \text{pr}_0, \text{pr}_{02})$ is a groupoid scheme over $S$ this is a special case of Lemma 40.11.3. But we can also prove it directly as follows.
Write $U = \mathop{\mathrm{Spec}}(k)$. Denote $R_ s$ (resp. $Z_ s$, resp. $U^2_ s$) the scheme $R$ (resp. $Z$, resp. $U \times _ S U$) viewed as a scheme over $k$ via $s$ (resp. $\text{pr}_1|_ Z$, resp. $\text{pr}_1$). Similarly, denote ${}_ tR$ (resp. ${}_ tZ$, resp. ${}_ tU^2$) the scheme $R$ (resp. $Z$, resp. $U \times _ S U$) viewed as a scheme over $k$ via $t$ (resp. $\text{pr}_0|_ Z$, resp. $\text{pr}_0$). The morphism $j$ induces morphisms of schemes $j_ s : R_ s \to U^2_ s$ and ${}_ tj : {}_ tR \to {}_ tU^2$ over $k$. Consider the commutative diagram
By Varieties, Lemma 33.24.2 we see that the closure of the image of $j_ s \times {}_ tj$ is $Z_ s \times _ k {}_ tZ$. By the commutativity of the diagram we conclude that $Z_ s \times _ k {}_ tZ$ maps into $Z$ by the bottom horizontal arrow. $\square$
Comments (0)