The Stacks project

Example 35.29.1. Consider the property $\mathcal{P}$ of morphisms of schemes defined by the rule $\mathcal{P}(X \to Y) = $“$Y$ is locally Noetherian”. The reader can verify that this is étale local on the source and étale local on the target (omitted, see Lemma 35.13.1). But it is not true that if $f : X \to Y$ has $\mathcal{P}$ and $g : Y \to Z$ is étale, then $g \circ f$ has $\mathcal{P}$. Namely, $f$ could be the identity on $Y$ and $g$ could be an open immersion of a locally Noetherian scheme $Y$ into a non locally Noetherian scheme $Z$.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04QX. Beware of the difference between the letter 'O' and the digit '0'.