Lemma 8.2.5. Let $\mathcal{C}$ be a category. Let $p : \mathcal{S} \to \mathcal{C}$ be a fibred category, see Categories, Section 4.33. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and let $x, y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ U)$. Denote $x, y : \mathcal{C}/U \to \mathcal{S}$ also the corresponding $1$-morphisms, see Categories, Lemma 4.41.1. Then

the $2$-fibre product $\mathcal{S} \times _{\mathcal{S} \times \mathcal{S}, (x, y)} \mathcal{C}/U$ is fibred in setoids over $\mathcal{C}/U$, and

$\mathit{Isom}(x, y)$ is the presheaf of sets corresponding to this category fibred in setoids, see Categories, Lemma 4.39.6.

## Comments (0)

There are also: