Processing math: 100%

The Stacks project

Lemma 94.15.1. Let S be a scheme contained in \mathit{Sch}_{fppf}. Let f : \mathcal{X} \to \mathcal{Y} be a 1-morphism of algebraic stacks over S. Let V \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf}). Let y : (\mathit{Sch}/V)_{fppf} \to \mathcal{Y} be surjective and smooth. Then there exists an object U \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf}) and a 2-commutative diagram

\xymatrix{ (\mathit{Sch}/U)_{fppf} \ar[r]_ a \ar[d]_ x & (\mathit{Sch}/V)_{fppf} \ar[d]^ y \\ \mathcal{X} \ar[r]^ f & \mathcal{Y} }

with x surjective and smooth.

Proof. First choose W \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf}) and a surjective smooth 1-morphism z : (\mathit{Sch}/W)_{fppf} \to \mathcal{X}. As \mathcal{Y} is an algebraic stack we may choose an equivalence

j : \mathcal{S}_ F \longrightarrow (\mathit{Sch}/W)_{fppf} \times _{f \circ z, \mathcal{Y}, y} (\mathit{Sch}/V)_{fppf}

where F is an algebraic space. By Lemma 94.10.6 the morphism \mathcal{S}_ F \to (\mathit{Sch}/W)_{fppf} is surjective and smooth as a base change of y. Hence by Lemma 94.10.5 we see that \mathcal{S}_ F \to \mathcal{X} is surjective and smooth. Choose an object U \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf}) and a surjective étale morphism U \to F. Then applying Lemma 94.10.5 once more we obtain the desired properties. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 94.15: Algebraic stacks, overhauled

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.