The Stacks project

Lemma 88.16.2. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}$ be an algebraic stack over $S$. Let $U$ be an algebraic space over $S$. Let $f : \mathcal{S}_ U \to \mathcal{X}$ be a surjective smooth morphism. Let $(U, R, s, t, c)$ be the groupoid in algebraic spaces and $f_{can} : [U/R] \to \mathcal{X}$ be the result of applying Lemma 88.16.1 to $U$ and $f$. Then

  1. the morphisms $s$, $t$ are smooth, and

  2. the $1$-morphism $f_{can} : [U/R] \to \mathcal{X}$ is an equivalence.

Proof. The morphisms $s, t$ are smooth by Lemmas 88.10.2 and 88.10.3. As the $1$-morphism $f$ is smooth and surjective it is clear that given any scheme $T$ and any object $a \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}_ T)$ there exists a smooth and surjective morphism $T' \to T$ such that $a|_ T'$ comes from an object of $[U/R]_{T'}$. Since $f_{can} : [U/R] \to \mathcal{X}$ is fully faithful, we deduce that $[U/R] \to \mathcal{X}$ is essentially surjective as descent data on objects are effective on both sides, see Stacks, Lemma 8.4.8. $\square$


Comments (2)

Comment #2338 by Emre Sertöz on

The statement of this lemma is a little hard to decipher jumping in to this section. I suggest the following for readability:

"Take a smooth atlas ." instead of he 3rd and 4th sentences.

In particular, we don't really need the notation here and it is not an immediately recognizable object.

Comment #2409 by on

Please read the explanation for why we use the notation in Section 93.1. I agree it is not immediately obvious; the cost of being very precise is that notation becomes cumbersome and that explanations become very long. The usual abuse of notation is introduced in Section 94.2.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04T5. Beware of the difference between the letter 'O' and the digit '0'.