Lemma 94.14.1. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}$, $\mathcal{Y}$ be algebraic stacks over $S$. Then $\mathcal{X} \times _{(\mathit{Sch}/S)_{fppf}} \mathcal{Y}$ is an algebraic stack, and is a product in the $2$-category of algebraic stacks over $S$.
Proof. An object of $\mathcal{X} \times _{(\mathit{Sch}/S)_{fppf}} \mathcal{Y}$ over $T$ is just a pair $(x, y)$ where $x$ is an object of $\mathcal{X}_ T$ and $y$ is an object of $\mathcal{Y}_ T$. Hence it is immediate from the definitions that $\mathcal{X} \times _{(\mathit{Sch}/S)_{fppf}} \mathcal{Y}$ is a stack in groupoids. If $(x, y)$ and $(x', y')$ are two objects of $\mathcal{X} \times _{(\mathit{Sch}/S)_{fppf}} \mathcal{Y}$ over $T$, then
Hence it follows from the equivalences in Lemma 94.10.11 and the fact that the category of algebraic spaces has products that the diagonal of $\mathcal{X} \times _{(\mathit{Sch}/S)_{fppf}} \mathcal{Y}$ is representable by algebraic spaces. Finally, suppose that $U, V \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$, and let $x, y$ be surjective smooth morphisms $x : (\mathit{Sch}/U)_{fppf} \to \mathcal{X}$, $y : (\mathit{Sch}/V)_{fppf} \to \mathcal{Y}$. Note that
The object $(\text{pr}_ U^*x, \text{pr}_ V^*y)$ of $\mathcal{X} \times _{(\mathit{Sch}/S)_{fppf}} \mathcal{Y}$ over $(\mathit{Sch}/U \times _ S V)_{fppf}$ thus defines a $1$-morphism
which is the composition of base changes of $x$ and $y$, hence is surjective and smooth, see Lemmas 94.10.6 and 94.10.5. We conclude that $\mathcal{X} \times _{(\mathit{Sch}/S)_{fppf}} \mathcal{Y}$ is indeed an algebraic stack. We omit the verification that it really is a product. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #2537 by Anonymous on
Comment #2571 by Johan on