Processing math: 100%

The Stacks project

Maps of sheaves glue.

Lemma 7.26.1. Let \mathcal{C} be a site. Let \{ U_ i \to U\} be a covering of \mathcal{C}. Let \mathcal{F}, \mathcal{G} be sheaves on \mathcal{C}. Given a collection

\varphi _ i : \mathcal{F}|_{\mathcal{C}/U_ i} \longrightarrow \mathcal{G}|_{\mathcal{C}/U_ i}

of maps of sheaves such that for all i, j \in I the maps \varphi _ i, \varphi _ j restrict to the same map \varphi _{ij} : \mathcal{F}|_{\mathcal{C}/U_ i \times _ U U_ j} \to \mathcal{G}|_{\mathcal{C}/U_ i \times _ U U_ j} then there exists a unique map of sheaves

\varphi : \mathcal{F}|_{\mathcal{C}/U} \longrightarrow \mathcal{G}|_{\mathcal{C}/U}

whose restriction to each \mathcal{C}/U_ i agrees with \varphi _ i.

Proof. The restrictions used in the lemma are those of Lemma 7.25.8. Let V/U be an object of \mathcal{C}/U. Set V_ i = U_ i \times _ U V and denote \mathcal{V} = \{ V_ i \to V\} . Observe that (U_ i \times _ U U_ j) \times _ U V = V_ i \times _ V V_ j. Then we have \mathcal{F}|_{\mathcal{C}/U_ i}(V_ i/U_ i) = \mathcal{F}(V_ i) and \mathcal{F}|_{\mathcal{C}/U_ i \times _ U U_ j}(V_ i \times _ V V_ j/U_ i \times _ U U_ j) = \mathcal{F}(V_ i \times _ V V_ j) and similarly for \mathcal{G}. Thus we can define \varphi on sections over V as the dotted arrows in the diagram

\xymatrix{ \mathcal{F}(V) \ar@{=}[r] & H^0(\mathcal{V}, \mathcal{F}) \ar@{..>}[d] \ar[r] & \prod \mathcal{F}(V_ i) \ar[d]_{\prod \varphi _ i} \ar@<1ex>[r] \ar@<-1ex>[r] & \prod \mathcal{F}(V_ i \times _ V V_ j) \ar[d]_{\prod \varphi _{ij}} \\ \mathcal{G}(V) \ar@{=}[r] & H^0(\mathcal{V}, \mathcal{G}) \ar[r] & \prod \mathcal{G}(V_ i) \ar@<1ex>[r] \ar@<-1ex>[r] & \prod \mathcal{G}(V_ i \times _ V V_ j) }

The equality signs come from the sheaf condition; see Section 7.10 for the notation H^0(\mathcal{V}, -). We omit the verification that these maps are compatible with the restriction maps. \square


Comments (1)

Comment #3034 by Brian Lawrence on

Suggested slogan: Maps of sheaves glue.


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.