The Stacks project

The category of sheaves on a site is cartesian closed

Lemma 7.26.2. Let $\mathcal{C}$ be a site. Let $\mathcal{F}$, $\mathcal{G}$ and $\mathcal{H}$ be sheaves on $\mathcal{C}$. There is a canonical bijection

\[ \mathop{Mor}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C})}(\mathcal{F}\times \mathcal{G},\mathcal{H}) = \mathop{Mor}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C})}(\mathcal{F},\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{G},\mathcal{H})) \]

which is functorial in all three entries.

Proof. The lemma says that the functors $-\times \mathcal{G}$ and $\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{G},-)$ are adjoint to each other. To show this, we use the notion of unit and counit, see Categories, Section 4.24. The unit

\[ \eta _\mathcal {F} : \mathcal{F} \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{G},\mathcal{F}\times \mathcal{G}) \]

sends $s \in \mathcal{F}(U)$ to the map $\mathcal{G}|_{\mathcal{C}/U} \to \mathcal{F}|_{\mathcal{C}/U}\times \mathcal{G}|_{\mathcal{C}/U}$ which over $V/U$ is given by

\[ \mathcal{G}(V) \longrightarrow \mathcal{F}(V)\times \mathcal{G}(V), \quad t \longmapsto (s|_{V},t). \]

The counit

\[ \epsilon _{\mathcal{H}} : \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{G}, \mathcal{H}) \times \mathcal{G} \longrightarrow \mathcal{H} \]

is the evaluation map. It is given by the rule

\[ \mathop{Mor}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U)}( \mathcal{G}|_{\mathcal{C}/U}, \mathcal{H}|_{\mathcal{C}/U}) \times \mathcal{G}(U) \longrightarrow \mathcal{H}(U),\quad (\varphi , s) \longmapsto \varphi (s). \]

Then for each $\varphi : \mathcal{F} \times \mathcal{G} \to \mathcal{H}$, the corresponding morphism $\mathcal{F} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{G},\mathcal{H})$ is given by mapping each section $s \in \mathcal{F}(U)$ to the morphism of sheaves on $\mathcal{C}/U$ which on sections over $V/U$ is given by

\[ \mathcal{G}(V) \longrightarrow \mathcal{H}(V),\quad t \longmapsto \varphi (s|_ V, t). \]

Conversely, for each $\psi : \mathcal{F} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{G}, \mathcal{H})$, the corresponding morphism $\mathcal{F} \times \mathcal{G} \to \mathcal{H}$ is given by

\[ \mathcal{F}(U) \times \mathcal{G}(U) \longrightarrow \mathcal{H}(U),\quad (s, t) \longmapsto \psi (s)(t) \]

on sections over an object $U$. We omit the details of the proof showing that these constructions are mutually inverse. $\square$

Comments (1)

Comment #2785 by Stanisław Szawiel on

Suggested slogan: The category of sheaves on a site is cartesian closed.

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BWQ. Beware of the difference between the letter 'O' and the digit '0'.