Lemma 94.18.1. Suppose given big sites \mathit{Sch}_{fppf} and \mathit{Sch}'_{fppf}. Assume that \mathit{Sch}_{fppf} is contained in \mathit{Sch}'_{fppf}, see Topologies, Section 34.12. Let S be an object of \mathit{Sch}_{fppf}. Let f : (\mathit{Sch}'/S)_{fppf} \to (\mathit{Sch}/S)_{fppf} the morphism of sites corresponding to the inclusion functor u : (\mathit{Sch}/S)_{fppf} \to (\mathit{Sch}'/S)_{fppf}. Let \mathcal{X} be a stack in groupoids over (\mathit{Sch}/S)_{fppf}.
if \mathcal{X} is representable by some X \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf}), then f^{-1}\mathcal{X} is representable too, in fact it is representable by the same scheme X, now viewed as an object of (\mathit{Sch}'/S)_{fppf},
if \mathcal{X} is representable by F \in \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_{fppf}) which is an algebraic space, then f^{-1}\mathcal{X} is representable by the algebraic space f^{-1}F,
if \mathcal{X} is an algebraic stack, then f^{-1}\mathcal{X} is an algebraic stack, and
if \mathcal{X} is a Deligne-Mumford stack, then f^{-1}\mathcal{X} is a Deligne-Mumford stack too.
Comments (0)