The Stacks project

Lemma 100.3.2. Let $P$ be a property of morphisms of algebraic spaces as above. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks representable by algebraic spaces. The following are equivalent:

  1. $f$ has $P$,

  2. for every algebraic space $Z$ and morphism $Z \to \mathcal{Y}$ the morphism $Z \times _\mathcal {Y} \mathcal{X} \to Z$ has $P$.

Proof. The implication (2) $\Rightarrow $ (1) is immediate. Assume (1). Let $Z \to \mathcal{Y}$ be as in (2). Choose a scheme $U$ and a surjective étale morphism $U \to Z$. By assumption the morphism $U \times _\mathcal {Y} \mathcal{X} \to U$ has $P$. But the diagram

\[ \xymatrix{ U \times _\mathcal {Y} \mathcal{X} \ar[d] \ar[r] & Z \times _\mathcal {Y} \mathcal{X} \ar[d] \\ U \ar[r] & Z } \]

is cartesian, hence the right vertical arrow has $P$ as $\{ U \to Z\} $ is an fppf covering. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04XC. Beware of the difference between the letter 'O' and the digit '0'.