The Stacks project

Lemma 77.25.3. Notation and assumption as in Lemma 77.21.1. Assume that

\[ \xymatrix{ R \ar[d]_ s \ar[r]_ f & R' \ar[d]^{s'} \\ U \ar[r]^ f & U' } \]

is cartesian. Then

\[ \xymatrix{ \mathcal{S}_ U \ar[d] \ar[r] & [U/R] \ar[d]^{[f]} \\ \mathcal{S}_{U'} \ar[r] & [U'/R'] } \]

is a $2$-fibre product square.

Proof. Applying the inverse isomorphisms $i : R \to R$ and $i' : R' \to R'$ to the (first) cartesian diagram of the statement of the lemma we see that

\[ \xymatrix{ R \ar[d]_ t \ar[r]_ f & R' \ar[d]^{t'} \\ U \ar[r]^ f & U' } \]

is cartesian as well. By Lemma 77.21.2 we have a $2$-fibre square

\[ \xymatrix{ [U''/R''] \ar[d] \ar[r] & [U/R] \ar[d] \\ \mathcal{S}_{U'} \ar[r] & [U'/R'] } \]

where $U'' = U \times _{f, U', t'} R'$ and $R'' = R \times _{f \circ s, U', t'} R'$. By the above we see that $(t, f) : R \to U''$ is an isomorphism, and that

\[ R'' = R \times _{f \circ s, U', t'} R' = R \times _{s, U} U \times _{f, U', t'} R' = R \times _{s, U, t} \times R. \]

Explicitly the isomorphism $R \times _{s, U, t} R \to R''$ is given by the rule $(r_0, r_1) \mapsto (r_0, f(r_1))$. Moreover, $s'', t'', c''$ translate into the maps

\[ R \times _{s, U, t} R \to R, \quad s''(r_0, r_1) = r_1, \quad t''(r_0, r_1) = c(r_0, r_1) \]


\[ \begin{matrix} c'' : & (R \times _{s, U, t} R) \times _{s'', R, t''} (R \times _{s, U, t} R) & \longrightarrow & R \times _{s, U, t} R, \\ & ((r_0, r_1), (r_2, r_3)) & \longmapsto & (c(r_0, r_2), r_3). \end{matrix} \]

Precomposing with the isomorphism

\[ R \times _{s, U, s} R \longrightarrow R \times _{s, U, t} R, \quad (r_0, r_1) \longmapsto (c(r_0, i(r_1)), r_1) \]

we see that $t''$ and $s''$ turn into $\text{pr}_0$ and $\text{pr}_1$ and that $c''$ turns into $\text{pr}_{02} : R \times _{s, U, s} R \times _{s, U, s} R \to R \times _{s, U, s} R$. Hence we see that there is an isomorphism $[U''/R''] \cong [R/R \times _{s, U, s} R]$ where as a groupoid in algebraic spaces $(R, R \times _{s, U, s} R, s'', t'', c'')$ is the restriction of the trivial groupoid $(U, U, \text{id}, \text{id}, \text{id})$ via $s : R \to U$. Since $s : R \to U$ is a surjection of fppf sheaves (as it has a right inverse) the morphism

\[ [U''/R''] \cong [R/R \times _{s, U, s} R] \longrightarrow [U/U] = \mathcal{S}_ U \]

is an equivalence by Lemma 77.25.2. This proves the lemma. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04ZN. Beware of the difference between the letter 'O' and the digit '0'.