The Stacks project

Lemma 100.9.11. Let $[U/R] \to \mathcal{X}$ be a presentation of an algebraic stack. There is a canonical bijection

\[ \text{locally closed substacks }\mathcal{Z}\text{ of }\mathcal{X} \longrightarrow R\text{-invariant locally closed subspaces }Z\text{ of }U \]

which sends $\mathcal{Z}$ to $U \times _\mathcal {X} \mathcal{Z}$. Moreover, a morphism of algebraic stacks $f : \mathcal{Y} \to \mathcal{X}$ factors through $\mathcal{Z}$ if and only if $\mathcal{Y} \times _\mathcal {X} U \to U$ factors through $Z$. Similarly for closed substacks and open substacks.

Proof. By Lemmas 100.9.7 and 100.9.8 we find that the map is a bijection. If $\mathcal{Y} \to \mathcal{X}$ factors through $\mathcal{Z}$ then of course the base change $\mathcal{Y} \times _\mathcal {X} U \to U$ factors through $Z$. Converse, suppose that $\mathcal{Y} \to \mathcal{X}$ is a morphism such that $\mathcal{Y} \times _\mathcal {X} U \to U$ factors through $Z$. We will show that for every scheme $T$ and morphism $T \to \mathcal{Y}$, given by an object $y$ of the fibre category of $\mathcal{Y}$ over $T$, the object $y$ is in fact in the fibre category of $\mathcal{Z}$ over $T$. Namely, the fibre product $T \times _\mathcal {X} U$ is an algebraic space and $T \times _\mathcal {X} U \to T$ is a surjective smooth morphism. Hence there is an fppf covering $\{ T_ i \to T\} $ such that $T_ i \to T$ factors through $T \times _\mathcal {X} U \to T$ for all $i$. Then $T_ i \to \mathcal{X}$ factors through $\mathcal{Y} \times _\mathcal {X} U$ and hence through $Z \subset U$. Thus $y|_{T_ i}$ is an object of $\mathcal{Z}$ (as $Z$ is the fibre product of $U$ with $\mathcal{Z}$ over $\mathcal{X}$). Since $\mathcal{Z}$ is a strictly full substack, we conclude that $y$ is an object of $\mathcal{Z}$ as desired. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 100.9: Immersions of algebraic stacks

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0507. Beware of the difference between the letter 'O' and the digit '0'.