Processing math: 100%

The Stacks project

Proof. Let f : \mathcal{X} \to \mathcal{Y} and \mathcal{Y}' \to \mathcal{Y} be morphisms of algebraic stacks. Let f' : \mathcal{Y}' \times _\mathcal {Y} \mathcal{X} \to \mathcal{Y}' be the base change of f by \mathcal{Y}' \to \mathcal{Y}. Then \Delta _{f'} is the base change of \Delta _ f by the morphism \mathcal{X}' \times _{\mathcal{Y}'} \mathcal{X}' \to \mathcal{X} \times _\mathcal {Y} \mathcal{X}, see Categories, Lemma 4.31.14. By the results of Properties of Stacks, Section 100.3 each of the properties of the diagonal used in Definition 101.4.1 is stable under base change. Hence the lemma is true. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 101.4: Separation axioms

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.