Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 101.4.7. Let $f : \mathcal{X} \to \mathcal{Z}$, $g : \mathcal{Y} \to \mathcal{Z}$ and $\mathcal{Z} \to \mathcal{T}$ be morphisms of algebraic stacks. Consider the induced morphism $i : \mathcal{X} \times _\mathcal {Z} \mathcal{Y} \to \mathcal{X} \times _\mathcal {T} \mathcal{Y}$. Then

  1. $i$ is representable by algebraic spaces and locally of finite type,

  2. if $\Delta _{\mathcal{Z}/\mathcal{T}}$ is quasi-separated, then $i$ is quasi-separated,

  3. if $\Delta _{\mathcal{Z}/\mathcal{T}}$ is separated, then $i$ is separated,

  4. if $\mathcal{Z} \to \mathcal{T}$ is DM, then $i$ is unramified,

  5. if $\mathcal{Z} \to \mathcal{T}$ is quasi-DM, then $i$ is locally quasi-finite,

  6. if $\mathcal{Z} \to \mathcal{T}$ is separated, then $i$ is proper, and

  7. if $\mathcal{Z} \to \mathcal{T}$ is quasi-separated, then $i$ is quasi-compact and quasi-separated.

Proof. The following diagram

\[ \xymatrix{ \mathcal{X} \times _\mathcal {Z} \mathcal{Y} \ar[r]_ i \ar[d] & \mathcal{X} \times _\mathcal {T} \mathcal{Y} \ar[d] \\ \mathcal{Z} \ar[r]^-{\Delta _{\mathcal{Z}/\mathcal{T}}} \ar[r] & \mathcal{Z} \times _\mathcal {T} \mathcal{Z} } \]

is a $2$-fibre product diagram, see Categories, Lemma 4.31.13. Hence $i$ is the base change of the diagonal morphism $\Delta _{\mathcal{Z}/\mathcal{T}}$. Thus the lemma follows from Lemma 101.3.3, and the material in Properties of Stacks, Section 100.3. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 101.4: Separation axioms

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.