Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 101.4.11. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks over the base scheme $S$.

  1. If $\mathcal{Y}$ is DM over $S$ and $f$ is DM, then $\mathcal{X}$ is DM over $S$.

  2. If $\mathcal{Y}$ is quasi-DM over $S$ and $f$ is quasi-DM, then $\mathcal{X}$ is quasi-DM over $S$.

  3. If $\mathcal{Y}$ is separated over $S$ and $f$ is separated, then $\mathcal{X}$ is separated over $S$.

  4. If $\mathcal{Y}$ is quasi-separated over $S$ and $f$ is quasi-separated, then $\mathcal{X}$ is quasi-separated over $S$.

  5. If $\mathcal{Y}$ is DM and $f$ is DM, then $\mathcal{X}$ is DM.

  6. If $\mathcal{Y}$ is quasi-DM and $f$ is quasi-DM, then $\mathcal{X}$ is quasi-DM.

  7. If $\mathcal{Y}$ is separated and $f$ is separated, then $\mathcal{X}$ is separated.

  8. If $\mathcal{Y}$ is quasi-separated and $f$ is quasi-separated, then $\mathcal{X}$ is quasi-separated.

Proof. Parts (1), (2), (3), and (4) follow immediately from Lemma 101.4.10 and Definition 101.4.2. For (5), (6), (7), and (8) think of $\mathcal{X}$ and $\mathcal{Y}$ as algebraic stacks over $\mathop{\mathrm{Spec}}(\mathbf{Z})$ and apply Lemma 101.4.10. Details omitted. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 101.4: Separation axioms

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.