The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.35.24. Let $R$ be a ring. Let $x, y \in R$ be nonzerodivisors. Let $R[x/y] \subset R_{xy}$ be the $R$-subalgebra generated by $x/y$, and similarly for the subalgebras $R[y/x]$ and $R[x/y, y/x]$. If $R$ is integrally closed in $R_ x$ or $R_ y$, then the sequence

\[ 0 \to R \xrightarrow {(-1, 1)} R[x/y] \oplus R[y/x] \xrightarrow {(1, 1)} R[x/y, y/x] \to 0 \]

is a short exact sequence of $R$-modules.

Proof. Since $x/y \cdot y/x = 1$ it is clear that the map $R[x/y] \oplus R[y/x] \to R[x/y, y/x]$ is surjective. Let $\alpha \in R[x/y] \cap R[y/x]$. To show exactness in the middle we have to prove that $\alpha \in R$. By assumption we may write

\[ \alpha = a_0 + a_1 x/y + \ldots + a_ n (x/y)^ n = b_0 + b_1 y/x + \ldots + b_ m(y/x)^ m \]

for some $n, m \geq 0$ and $a_ i, b_ j \in R$. Pick some $N > \max (n, m)$. Consider the finite $R$-submodule $M$ of $R_{xy}$ generated by the elements

\[ (x/y)^ N, (x/y)^{N - 1}, \ldots , x/y, 1, y/x, \ldots , (y/x)^{N - 1}, (y/x)^ N \]

We claim that $\alpha M \subset M$. Namely, it is clear that $(x/y)^ i (b_0 + b_1 y/x + \ldots + b_ m(y/x)^ m) \in M$ for $0 \leq i \leq N$ and that $(y/x)^ i (a_0 + a_1 x/y + \ldots + a_ n(x/y)^ n) \in M$ for $0 \leq i \leq N$. Hence $\alpha $ is integral over $R$ by Lemma 10.35.2. Note that $\alpha \in R_ x$, so if $R$ is integrally closed in $R_ x$ then $\alpha \in R$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 052J. Beware of the difference between the letter 'O' and the digit '0'.