The Stacks project

Lemma 37.24.7. Let $f : X \to Y$ be a morphism of schemes. Assume that $Y$ is irreducible and $f$ is of finite type. There exists a diagram

\[ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X_ V \ar[r] \ar[d] & X \ar[d]^ f \\ Y' \ar[r]^ g & V \ar[r] & Y } \]


  1. $V$ is a nonempty open of $Y$,

  2. $X_ V = V \times _ Y X$,

  3. $g : Y' \to V$ is a finite universal homeomorphism,

  4. $X' = (Y' \times _ Y X)_{red} = (Y' \times _ V X_ V)_{red}$,

  5. $g'$ is a finite universal homeomorphism,

  6. $Y'$ is an integral affine scheme,

  7. $f'$ is flat and of finite presentation, and

  8. the generic fibre of $f'$ is geometrically reduced.

Proof. Let $V = \mathop{\mathrm{Spec}}(A)$ be a nonempty affine open of $Y$. By assumption the Jacobson radical of $A$ is a prime ideal $\mathfrak p$. Let $K = \kappa (\mathfrak p)$. Let $p$ be the characteristic of $K$ if positive and $1$ if the characteristic is zero. By Varieties, Lemma 33.6.11 there exists a finite purely inseparable field extension $K'/K$ such that $X_{K'}$ is geometrically reduced over $K'$. Choose elements $x_1, \ldots , x_ n \in K'$ which generate $K'$ over $K$ and such that some $p$-power of $x_ i$ is in $A/\mathfrak p$. Let $A' \subset K'$ be the finite $A$-subalgebra of $K'$ generated by $x_1, \ldots , x_ n$. Note that $A'$ is a domain with fraction field $K'$. By Algebra, Lemma 10.46.7 we see that $A \to A'$ induces a universal homeomorphism on spectra. Set $Y' = \mathop{\mathrm{Spec}}(A')$. Set $X' = (Y' \times _ Y X)_{red}$. The generic fibre of $X' \to Y'$ is $(X_ K)_{red}$ by Lemma 37.24.6 which is geometrically reduced by construction. Note that $X' \to X_ V$ is a finite universal homeomorphism as the composition of the reduction morphism $X' \to Y' \times _ Y X$ (see Morphisms, Lemma 29.45.6) and the base change of $g$. At this point all of the properties of the lemma hold except for possibly (7). This can be achieved by shrinking $Y'$ and hence $V$, see Morphisms, Proposition 29.27.1. $\square$

Comments (1)

Comment #8432 by Ben Church on

In line 4, it should read "such that (X_{K'})_{red} is geometrically reduced"

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0550. Beware of the difference between the letter 'O' and the digit '0'.