Lemma 10.82.5. Let $M$ be an $R$-module. Then $M$ is flat if and only if any exact sequence of $R$-modules
\[ 0 \to M_1 \to M_2 \to M \to 0 \]
is universally exact.
Lemma 10.82.5. Let $M$ be an $R$-module. Then $M$ is flat if and only if any exact sequence of $R$-modules
is universally exact.
Proof. This follows from Lemma 10.81.3 and Theorem 10.82.3 (5). $\square$
Comments (0)
There are also: