Definition 10.84.1. Let M be an R-module. A direct sum dévissage of M is a family of submodules (M_{\alpha })_{\alpha \in S}, indexed by an ordinal S and increasing (with respect to inclusion), such that:
M_0 = 0;
M = \bigcup _{\alpha } M_{\alpha };
if \alpha \in S is a limit ordinal, then M_{\alpha } = \bigcup _{\beta < \alpha } M_{\beta };
if \alpha + 1 \in S, then M_{\alpha } is a direct summand of M_{\alpha + 1}.
If moreover
M_{\alpha + 1}/M_{\alpha } is countably generated for \alpha + 1 \in S,
then (M_{\alpha })_{\alpha \in S} is called a Kaplansky dévissage of M.
Comments (0)
There are also: