Lemma 10.85.3. Let $(A_ i, \varphi _{ji})$ be a directed inverse system over $I$. Suppose $I$ is countable. If $(A_ i, \varphi _{ji})$ is Mittag-Leffler and the $A_ i$ are nonempty, then $\mathop{\mathrm{lim}}\nolimits A_ i$ is nonempty.

Proof. Let $i_1, i_2, i_3, \ldots$ be an enumeration of the elements of $I$. Define inductively a sequence of elements $j_ n \in I$ for $n = 1, 2, 3, \ldots$ by the conditions: $j_1 = i_1$, and $j_ n \geq i_ n$ and $j_ n \geq j_ m$ for $m < n$. Then the sequence $j_ n$ is increasing and forms a cofinal subset of $I$. Hence we may assume $I =\{ 1, 2, 3, \ldots \}$. So by Example 10.85.2 we are reduced to showing that the limit of an inverse system of nonempty sets with surjective maps indexed by the positive integers is nonempty. This is obvious. $\square$

There are also:

• 4 comment(s) on Section 10.85: Mittag-Leffler systems

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).