Lemma 31.2.6. Let X be a locally Noetherian scheme. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. Then
\mathcal{F} = 0 \Leftrightarrow \text{Ass}(\mathcal{F}) = \emptyset .
Proof. If \mathcal{F} = 0, then \text{Ass}(\mathcal{F}) = \emptyset by definition. Conversely, if \text{Ass}(\mathcal{F}) = \emptyset , then \mathcal{F} = 0 by Algebra, Lemma 10.63.7. To translate from schemes to algebra, restrict to any affine and use Lemma 31.2.2. \square
Comments (0)
There are also: