The Stacks project

Definition 31.4.1. Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.

  1. An embedded associated point of $\mathcal{F}$ is an associated point which is not maximal among the associated points of $\mathcal{F}$, i.e., it is the specialization of another associated point of $\mathcal{F}$.

  2. A point $x$ of $X$ is called an embedded point if $x$ is an embedded associated point of $\mathcal{O}_ X$.

  3. An embedded component of $X$ is an irreducible closed subset $Z = \overline{\{ x\} }$ where $x$ is an embedded point of $X$.

Comments (0)

There are also:

  • 2 comment(s) on Section 31.4: Embedded points

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05AK. Beware of the difference between the letter 'O' and the digit '0'.