Lemma 31.5.7. Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Let $x \in \text{Supp}(\mathcal{F})$ be a point in the support of $\mathcal{F}$ which is not a specialization of another point of $\text{Supp}(\mathcal{F})$. Then $x \in \text{WeakAss}(\mathcal{F})$. In particular, any generic point of an irreducible component of $X$ is weakly associated to $\mathcal{O}_ X$.

Proof. Since $x \in \text{Supp}(\mathcal{F})$ the module $\mathcal{F}_ x$ is not zero. Hence $\text{WeakAss}(\mathcal{F}_ x) \subset \mathop{\mathrm{Spec}}(\mathcal{O}_{X, x})$ is nonempty by Algebra, Lemma 10.66.5. On the other hand, by assumption $\text{Supp}(\mathcal{F}_ x) = \{ \mathfrak m_ x\}$. Since $\text{WeakAss}(\mathcal{F}_ x) \subset \text{Supp}(\mathcal{F}_ x)$ (Algebra, Lemma 10.66.6) we see that $\mathfrak m_ x$ is weakly associated to $\mathcal{F}_ x$ and we win. $\square$

There are also:

• 4 comment(s) on Section 31.5: Weakly associated points

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).