Lemma 10.63.16. Let $R$ be a ring. Let $M$ be an $R$-module. Let $S \subset R$ be a multiplicative subset. Via the canonical injection $\mathop{\mathrm{Spec}}(S^{-1}R) \to \mathop{\mathrm{Spec}}(R)$ we have

$\text{Ass}_ R(S^{-1}M) = \text{Ass}_{S^{-1}R}(S^{-1}M)$,

$\text{Ass}_ R(M) \cap \mathop{\mathrm{Spec}}(S^{-1}R) \subset \text{Ass}_ R(S^{-1}M)$, and

if $R$ is Noetherian this inclusion is an equality.

## Comments (2)

Comment #8249 by Et on

Comment #8250 by Stacks Project on

There are also: