Lemma 10.63.16. Let R be a ring. Let M be an R-module. Let S \subset R be a multiplicative subset. Via the canonical injection \mathop{\mathrm{Spec}}(S^{-1}R) \to \mathop{\mathrm{Spec}}(R) we have
\text{Ass}_ R(S^{-1}M) = \text{Ass}_{S^{-1}R}(S^{-1}M),
\text{Ass}_ R(M) \cap \mathop{\mathrm{Spec}}(S^{-1}R) \subset \text{Ass}_ R(S^{-1}M), and
if R is Noetherian this inclusion is an equality.
Comments (4)
Comment #8249 by Et on
Comment #8250 by Stacks Project on
Comment #9034 by Elías Guisado on
Comment #9185 by Stacks project on
There are also: