Lemma 10.65.4. Let R \to S be a ring map. Let N be an S-module. Assume N is flat as an R-module and R is a domain with fraction field K. Then
via the canonical inclusion \mathop{\mathrm{Spec}}(S \otimes _ R K) \subset \mathop{\mathrm{Spec}}(S).
Lemma 10.65.4. Let R \to S be a ring map. Let N be an S-module. Assume N is flat as an R-module and R is a domain with fraction field K. Then
via the canonical inclusion \mathop{\mathrm{Spec}}(S \otimes _ R K) \subset \mathop{\mathrm{Spec}}(S).
Proof. Note that S \otimes _ R K = (R \setminus \{ 0\} )^{-1}S and N \otimes _ R K = (R \setminus \{ 0\} )^{-1}N. For any nonzero x \in R multiplication by x on N is injective as N is flat over R. Hence the lemma follows from Lemma 10.63.17 combined with Lemma 10.63.16 part (1). \square
Comments (0)