Lemma 10.66.15. Let $R$ be a ring. Let $M$ be an $R$-module. Let $S \subset R$ be a multiplicative subset. Via the canonical injection $\mathop{\mathrm{Spec}}(S^{-1}R) \to \mathop{\mathrm{Spec}}(R)$ we have $\text{WeakAss}_ R(S^{-1}M) = \text{WeakAss}_{S^{-1}R}(S^{-1}M)$ and
Proof. Suppose that $m \in S^{-1}M$. Let $I = \{ x \in R \mid xm = 0\} $ and $I' = \{ x' \in S^{-1}R \mid x'm = 0\} $. Then $I' = S^{-1}I$ and $I \cap S = \emptyset $ unless $I = R$ (verifications omitted). Thus primes in $S^{-1}R$ minimal over $I'$ correspond bijectively to primes in $R$ minimal over $I$ and avoiding $S$. This proves the equality $\text{WeakAss}_ R(S^{-1}M) = \text{WeakAss}_{S^{-1}R}(S^{-1}M)$. The second equality follows from Lemma 10.66.2 since for $\mathfrak p \in R$, $S \cap \mathfrak p = \emptyset $ we have $M_{\mathfrak p} = (S^{-1}M)_{S^{-1}\mathfrak p}$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #5513 by Ben church on
Comment #5708 by Johan on
There are also: