Lemma 15.89.14. Let \varphi : R \to S be a flat ring map and (f_1, \ldots , f_ t) = R. Then \text{Can} and H^0 are quasi-inverse equivalences of categories
\text{Mod}_ R = \text{Glue}(R \to S, f_1, \ldots , f_ t)
Proof. Consider an object \mathbf{M} = (M', M_ i, \alpha _ i, \alpha _{ij}) of \text{Glue}(R \to S, f_1, \ldots , f_ t). By Algebra, Lemma 10.24.5 there exists a unique module M and isomorphisms M_{f_ i} \to M_ i which recover the glueing data \alpha _{ij}. Then both M' and M \otimes _ R S are S-modules which recover the modules M_ i \otimes _ R S upon localizing at f_ i. Whence there is a canonical isomorphism M \otimes _ R S \to M'. This shows that \mathbf{M} is in the essential image of \text{Can}. Combined with Lemma 15.89.12 the lemma follows. \square
Comments (0)
There are also: