Lemma 38.2.7. Let g : T \to S be a finite flat morphism of schemes. Let \mathcal{G} be a quasi-coherent \mathcal{O}_ S-module. Let t \in T be a point with image s \in S. Then
Proof. The implication “\Leftarrow ” follows immediately from Divisors, Lemma 31.6.4. Assume t \in \text{WeakAss}(g^*\mathcal{G}). Let \mathop{\mathrm{Spec}}(A) \subset S be an affine open neighbourhood of s. Let \mathcal{G} be the quasi-coherent sheaf associated to the A-module M. Let \mathfrak p \subset A be the prime ideal corresponding to s. As g is finite flat we have g^{-1}(\mathop{\mathrm{Spec}}(A)) = \mathop{\mathrm{Spec}}(B) for some finite flat A-algebra B. Note that g^*\mathcal{G} is the quasi-coherent \mathcal{O}_{\mathop{\mathrm{Spec}}(B)}-module associated to the B-module M \otimes _ A B and g_*g^*\mathcal{G} is the quasi-coherent \mathcal{O}_{\mathop{\mathrm{Spec}}(A)}-module associated to the A-module M \otimes _ A B. By Algebra, Lemma 10.78.5 we have B_{\mathfrak p} \cong A_{\mathfrak p}^{\oplus n} for some integer n \geq 0. Note that n \geq 1 as we assumed there exists at least one point of T lying over s. Hence we see by looking at stalks that
Now the assumption that t \in \text{WeakAss}(g^*\mathcal{G}) implies that s \in \text{WeakAss}(g_*g^*\mathcal{G}) by Divisors, Lemma 31.6.3 and hence by the above s \in \text{WeakAss}(\mathcal{G}). \square
Comments (0)