Lemma 110.37.1. There exists a local ring $A$, a finite type ring map $A \to B$ and a prime $\mathfrak q$ lying over $\mathfrak m_ A$ such that $B_{\mathfrak q}$ is flat over $A$, and for any element $g \in B$, $g \not\in \mathfrak q$ the ring $B_ g$ is neither finitely presented over $A$ nor flat over $A$.
Proof. See discussion above. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: