Definition 38.6.2. Let $R \to S$ be a finite type ring map. Let $\mathfrak r$ be a prime of $R$. Let $N$ be a finite $S$-module. A complete dévissage of $N/S/R$ over $\mathfrak r$ is given by $R$-algebra maps
finite $A_ i$-modules $M_ i$ and $B_ i$-module maps $\alpha _ i : B_ i^{\oplus r_ i} \to M_ i$ such that
$S \to A_1$ is surjective and of finite presentation,
$B_ i \to A_{i + 1}$ is surjective and of finite presentation,
$B_ i \to A_ i$ is finite,
$R \to B_ i$ is smooth with geometrically irreducible fibres,
$N \cong M_1$ as $S$-modules,
$\mathop{\mathrm{Coker}}(\alpha _ i) \cong M_{i + 1}$ as $B_ i$-modules,
$\alpha _ i : \kappa (\mathfrak p_ i)^{\oplus r_ i} \to M_ i \otimes _{B_ i} \kappa (\mathfrak p_ i)$ is an isomorphism where $\mathfrak p_ i = \mathfrak rB_ i$, and
$\mathop{\mathrm{Coker}}(\alpha _ n) = 0$.
In this situation we say that $(A_ i, B_ i, M_ i, \alpha _ i)_{i = 1, \ldots , n}$ is a complete dévissage of $N/S/R$ over $\mathfrak r$.
Comments (0)