Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 38.14.4. Let $R$ be a henselian local ring with maximal ideal $\mathfrak m$. Let $R \to S$ be a ring map. Let $N$ be an $S$-module. Assume $N$ is countably generated and Mittag-Leffler as an $R$-module. Then for any $R$-module $M$ and for any prime $\mathfrak q \subset S$ which is an associated prime of $N \otimes _ R M$ we have $\mathfrak q + \mathfrak m S \not= S$.

Proof. This lemma reduces to Lemma 38.14.3 by Algebra, Lemma 10.153.13. $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.