Lemma 38.16.4. Let $f : X \to S$ be a morphism of schemes which is of finite type. Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_ X$-module. Let $s \in S$. Let $(S', s') \to (S, s)$ be a morphism of pointed schemes. If $S' \to S$ is quasi-finite at $s'$ and $\mathcal{F}$ is pure along $X_ s$, then $\mathcal{F}_{S'}$ is pure along $X_{s'}$.

**Proof.**
It $(T \to S', t' \leadsto t, \xi )$ is an impurity of $\mathcal{F}_{S'}$ above $s'$ with $T \to S'$ quasi-finite at $t$, then $(T \to S, t' \to t, \xi )$ is an impurity of $\mathcal{F}$ above $s$ with $T \to S$ quasi-finite at $t$, see Morphisms, Lemma 29.20.12. Hence the lemma follows immediately from the characterization (2) of purity given following Definition 38.16.1.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)