Lemma 38.17.1. Let $f : X \to S$ be a morphism of schemes which is of finite type. Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_ X$-module.
If the support of $\mathcal{F}$ is proper over $S$, then $\mathcal{F}$ is universally pure relative to $S$.
If $f$ is proper, then $\mathcal{F}$ is universally pure relative to $S$.
If $f$ is proper, then $X$ is universally pure relative to $S$.
Comments (0)