Proposition 10.28.8. If $\mathcal{F}$ is an Oka family of ideals, then any maximal element of the complement of $\mathcal{F}$ is prime.

**Proof.**
Suppose $I \not\in \mathcal{F}$ is maximal with respect to not being in $\mathcal{F}$ but $I$ is not prime. Note that $I \not= R$ because $R \in \mathcal{F}$. Since $I$ is not prime we can find $a, b \in R - I$ with $ab \in I$. It follows that $(I, a) \neq I$ and $(I : a)$ contains $b \not\in I$ so also $(I : a) \neq I$. Thus $(I : a), (I, a)$ both strictly contain $I$, so they must belong to $\mathcal{F}$. By the Oka condition, we have $I \in \mathcal{F}$, a contradiction.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: