The Stacks project

Lemma 38.10.7. Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$. Let $s \in S$. Assume that

  1. $f$ is of finite type,

  2. $\mathcal{F}$ is of finite type, and

  3. $\mathcal{F}$ is flat over $S$ at every point of the fibre $X_ s$.

Then there exists an elementary étale neighbourhood $(S', s') \to (S, s)$ and an open subscheme

\[ V \subset X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S', s'}) \]

which contains the fibre $X_ s = X \times _ S s'$ such that the pullback of $\mathcal{F}$ to $V$ is flat over $\mathcal{O}_{S', s'}$.

Proof. (The only difference between this and Lemma 38.10.6 is that we do not assume $f$ is of finite presentation.) For every point $x \in X_ s$ we can use Lemma 38.10.5 to find an elementary étale neighbourhood $(S_ x, s_ x) \to (S, s)$ and an open $V_ x \subset X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S_ x, s_ x})$ such that $x \in X_ s = X \times _ S s_ x$ is contained in $V_ x$ and such that the pullback of $\mathcal{F}$ to $V_ x$ is flat over $\mathcal{O}_{S_ x, s_ x}$. In particular we may view the fibre $(V_ x)_{s_ x}$ as an open neighbourhood of $x$ in $X_ s$. Because $X_ s$ is quasi-compact we can find a finite number of points $x_1, \ldots , x_ n \in X_ s$ such that $X_ s$ is the union of the $(V_{x_ i})_{s_{x_ i}}$. Choose an elementary étale neighbourhood $(S' , s') \to (S, s)$ which dominates each of the neighbourhoods $(S_{x_ i}, s_{x_ i})$, see More on Morphisms, Lemma 37.35.4. Set $V = \bigcup V_ i$ where $V_ i$ is the inverse images of the open $V_{x_ i}$ via the morphism

\[ X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S', s'}) \longrightarrow X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S_{x_ i}, s_{x_ i}}) \]

By construction $V$ contains $X_ s$ and by construction the pullback of $\mathcal{F}$ to $V$ is flat over $\mathcal{O}_{S', s'}$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05KV. Beware of the difference between the letter 'O' and the digit '0'.