The Stacks project

Situation 38.20.3. Let $(A, \mathfrak m_ A)$ be a local ring. Denote $\mathcal{C}$ the category whose objects are $A$-algebras $A'$ which are local rings such that the algebra structure $A \to A'$ is a local homomorphism of local rings. A morphism between objects $A', A''$ of $\mathcal{C}$ is a local homomorphism $A' \to A''$ of $A$-algebras. Let $A \to B$ be a local ring map of local rings and let $M$ be a $B$-module. If $A'$ is an object of $\mathcal{C}$ we set $B' = B \otimes _ A A'$ and we set $M' = M \otimes _ A A'$ as a $B'$-module. Given $A' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, consider the condition
\begin{equation} \label{flat-equation-flat-at-primes} \forall \mathfrak q \in V(\mathfrak m_{A'}B' + \mathfrak m_ B B') \subset \mathop{\mathrm{Spec}}(B') : M'_{\mathfrak q}\text{ is flat over }A'. \end{equation}

Note the similarity with More on Algebra, Equation ( In particular, if $A' \to A''$ is a morphism of $\mathcal{C}$ and ( holds for $A'$, then it holds for $A''$, see More on Algebra, Lemma 15.19.2. Hence we obtain a functor
\begin{equation} \label{flat-equation-flat-at-point} F_{lf} : \mathcal{C} \longrightarrow \textit{Sets}, \quad A' \longrightarrow \left\{ \begin{matrix} \{ *\} & \text{if }(05ML)\text{ holds}, \\ \emptyset & \text{else.} & \end{matrix} \right. \end{equation}

Comments (0)

There are also:

  • 2 comment(s) on Section 38.20: Flattening functors

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05MK. Beware of the difference between the letter 'O' and the digit '0'.