Situation 38.20.13. Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. For any scheme $T$ over $S$ we will denote $\mathcal{F}_ T$ the base change of $\mathcal{F}$ to $T$, in other words, $\mathcal{F}_ T$ is the pullback of $\mathcal{F}$ via the projection morphism $X_ T = X \times _ S T \to X$. Since the base change of a flat module is flat we obtain a functor
38.20.13.1
\begin{equation} \label{flat-equation-flat} F_{flat} : (\mathit{Sch}/S)^{opp} \longrightarrow \textit{Sets}, \quad T \longrightarrow \left\{ \begin{matrix} \{ *\}
& \text{if } \mathcal{F}_ T \text{ is flat over }T,
\\ \emptyset
& \text{else.}
\end{matrix} \right. \end{equation}
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: