The Stacks project

Lemma 10.126.4. Let $R$ be a ring. Let $S \subset R$ be a multiplicative subset. Let $M$ be an $R$-module.

  1. If $S^{-1}M$ is a finite $S^{-1}R$-module then there exists a finite $R$-module $M'$ and a map $M' \to M$ which induces an isomorphism $S^{-1}M' \to S^{-1}M$.

  2. If $S^{-1}M$ is a finitely presented $S^{-1}R$-module then there exists an $R$-module $M'$ of finite presentation and a map $M' \to M$ which induces an isomorphism $S^{-1}M' \to S^{-1}M$.

Proof. Proof of (1). Let $x_1, \ldots , x_ n \in M$ be elements which generate $S^{-1}M$ as an $S^{-1}R$-module. Let $M'$ be the $R$-submodule of $M$ generated by $x_1, \ldots , x_ n$.

Proof of (2). Let $x_1, \ldots , x_ n \in M$ be elements which generate $S^{-1}M$ as an $S^{-1}R$-module. Let $K = \mathop{\mathrm{Ker}}(R^{\oplus n} \to M)$ where the map is given by the rule $(a_1, \ldots , a_ n) \mapsto \sum a_ i x_ i$. By Lemma 10.5.3 we see that $S^{-1}K$ is a finite $S^{-1}R$-module. By (1) we can find a finite submodule $K' \subset K$ with $S^{-1}K' = S^{-1}K$. Take $M' = \mathop{\mathrm{Coker}}(K' \to R^{\oplus n})$. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 10.126: Algebras and modules of finite presentation

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05N6. Beware of the difference between the letter 'O' and the digit '0'.