Lemma 10.126.4. Let R be a ring. Let S \subset R be a multiplicative subset. Let M be an R-module.
If S^{-1}M is a finite S^{-1}R-module then there exists a finite R-module M' and a map M' \to M which induces an isomorphism S^{-1}M' \to S^{-1}M.
If S^{-1}M is a finitely presented S^{-1}R-module then there exists an R-module M' of finite presentation and a map M' \to M which induces an isomorphism S^{-1}M' \to S^{-1}M.
Comments (0)
There are also: