Definition 17.17.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. An $\mathcal{O}_ X$-module $\mathcal{F}$ is flat if the functor
\[ \textit{Mod}(\mathcal{O}_ X) \longrightarrow \textit{Mod}(\mathcal{O}_ X), \quad \mathcal{G} \mapsto \mathcal{G} \otimes _\mathcal {O} \mathcal{F} \]
is exact.
Comments (0)