Lemma 28.20.2. Let X be a scheme. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. The following are equivalent:
\mathcal{F} is a flat \mathcal{O}_ X-module of finite presentation,
\mathcal{F} is \mathcal{O}_ X-module of finite presentation and for all x \in X the stalk \mathcal{F}_ x is a free \mathcal{O}_{X, x}-module,
\mathcal{F} is a locally free, finite type \mathcal{O}_ X-module,
\mathcal{F} is a finite locally free \mathcal{O}_ X-module, and
\mathcal{F} is an \mathcal{O}_ X-module of finite type, for every x \in X the stalk \mathcal{F}_ x is a free \mathcal{O}_{X, x}-module, and the function
\rho _\mathcal {F} : X \to \mathbf{Z}, \quad x \longmapsto \dim _{\kappa (x)} \mathcal{F}_ x \otimes _{\mathcal{O}_{X, x}} \kappa (x)is locally constant in the Zariski topology on X.
Comments (2)
Comment #4607 by James Waldron on
Comment #4777 by Johan on