Lemma 13.4.6. Let $\mathcal{D}$ be a pre-triangulated category. Let $(X, Y, Z, f, g, h)$ be a distinguished triangle. If

$\xymatrix{ Z \ar[r]_ h \ar[d]_ c & X \ar[d]^{a} \\ Z \ar[r]^ h & X }$

is commutative and $a^2 = a$, $c^2 = c$, then there exists a morphism $b : Y \to Y$ with $b^2 = b$ such that $(a, b, c)$ is an endomorphism of the triangle $(X, Y, Z, f, g, h)$.

Proof. By TR3 there exists a morphism $b'$ such that $(a, b', c)$ is an endomorphism of $(X, Y, Z, f, g, h)$. Then $(0, (b')^2 - b', 0)$ is also an endomorphism. By Lemma 13.4.5 we see that $(b')^2 - b'$ has square zero. Set $b = b' - (2b' - 1)((b')^2 - b') = 3(b')^2 - 2(b')^3$. A computation shows that $(a, b, c)$ is an endomorphism and that $b^2 - b = (4(b')^2 - 4b' - 3)((b')^2 - b')^2 = 0$. $\square$

Comment #321 by arp on

Typo: In the diagram in the statement of the Lemma, f should be replaced with h.

There are also:

• 13 comment(s) on Section 13.4: Elementary results on triangulated categories

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).