The Stacks project

Lemma 13.4.5. Let $\mathcal{D}$ be a pre-triangulated category. Let

\[ (0, b, 0), (0, b', 0) : (X, Y, Z, f, g, h) \to (X, Y, Z, f, g, h) \]

be endomorphisms of a distinguished triangle. Then $bb' = 0$.

Proof. Picture

\[ \xymatrix{ X \ar[r] \ar[d]^0 & Y \ar[r] \ar[d]^{b, b'} \ar@{..>}[ld]^\alpha & Z \ar[r] \ar[d]^0 \ar@{..>}[ld]^\beta & X[1] \ar[d]^0 \\ X \ar[r] & Y \ar[r] & Z \ar[r] & X[1] } \]

Applying Lemma 13.4.2 we find dotted arrows $\alpha $ and $\beta $ such that $b' = f \circ \alpha $ and $b = \beta \circ g$. Then $bb' = \beta \circ g \circ f \circ \alpha = 0$ as $g \circ f = 0$ by Lemma 13.4.1. $\square$

Comments (1)

Comment #320 by arp on

Typo: I think the reference should be to Lemma 13.4.2 (tag 0149) not 13.4.3.

There are also:

  • 13 comment(s) on Section 13.4: Elementary results on triangulated categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05QP. Beware of the difference between the letter 'O' and the digit '0'.